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Transparent Absorbing Boundary (TAB) for
the Truncation of the Computational Domain

Jian Peng and Constantine A. Balanis

Abstract—A new approach to domain truncation without re-
flection is proposed for finite methods. The open-space Maxwell’s
equations, along with boundary conditions, are transformed to an
equivalent system with a homogeneous closed boundary; the lat-
ter is then solved numerically. Like the popular perfectly matched
layer (PML), the new method is independent of frequency and
incident angle. Its uniqueness is that it does not need the extra
absorption region, since the field attenuation takes place in the
domain of the subject.

Index Terms—Absorbing boundary, computational domain,
truncation method, equivalent system.

I. INTRODUCTION

TO TRUNCATE an unbounded space, a variety of tech-
niques have been proposed [1]–[3]. The popular perfectly

matched layer (PML) [4] provides a virtually reflection-free
truncation that is independent of frequency and incident angle.
However, an absorbing region, additional to the domain of
interest, is needed in order for the outward-traveling wave to
be absorbed.

The transparent absorbing boundary (TAB) proposed in this
letter is a truncation method that forces the fields to decay
inside the domain of interest and to become zero at the
domain’s boundary. The extra absorbing region used in the
PML is thus eliminated. Since the method assumes no infinite
geometry (i.e., half-space interfaces in PML or plane waves
in Mur), it is possible to terminate a domain “conformally,”
which makes the computational domain even smaller. Due to
its rigorous analytical approach, the method can be directly
applied to various finite methods, such as finite difference and
finite element, in either time or frequency domains.

II. TRANSPARENT ABSORBING BOUNDARY

Conventional absorption-based truncation methods focus on
the design of absorbers (e.g., the loss mechanism and the
geometry). However, the TAB method primarily emphasizes
the results of absorption. The amplitudes of the fields are
modulated in the computational domain to achieve reflection-
free domain truncation.
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To initiate the formulation of the TAB, auxiliary fields
and are first introduced and defined as

(1a)

(1b)

where and are the original physical fields of
the problem of interest. is a scalar function that decays
outwardly and becomes zero at the boundary. An equivalence
between the physical and auxiliary systems is then established
by transforming Maxwell’s equations for the physical fields

and , along with the boundary conditions, into the
governing equations and boundary conditions forand .
Instead of solving Maxwell’s equations in the unbounded
space, one can first solve for the auxiliary fields in the finite
closed domain. The physical fields interior to the boundary are
then found with (1). Note that it is not necessary to find
and on the boundary itself. The closed surface over which
the equivalence principle is applied to find the far-zone
and can be placed anywhere in the domain (as long as it
is exterior to the subject of study); usually this is chosen at
one or two cells interior to the truncation boundary.

Assume that is the boundary of the subject domain, and
for . By expressing in terms of

, one finds, from Maxwell’s equations, the auxiliary
system’s governing equations for as

(2a)

(2b)

(2c)

(2d)

where and retain their physical meanings.
The most important feature of (2) is the introduction of the

and terms that represent the losses in
a system of hyperbolic partial differential equations [5], [6].
Regardless of their physical interpretations, it is these terms
that result in the absorption of energy. Therefore, the TAB
is an absorption-based technique, with the emphasis on the
effect of the absorption.

On the boundary , the auxiliary fields satisfy the following
Dirichlet boundary conditions:

(3a)

(3b)
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Fig. 1. TE (horizontal)-polarized plane wave incident at an oblique angle
on an interface.

Apparently, homogeneous boundary conditions can be ob-
tained for the auxiliary system if is chosen properly. An
example of such functions over a one-dimensional (1-D)
domain is

(4)

where is the length of attenuation path, while and
should be no less than one.

To ensure that no artificial reflection is introduced during
the transformation from the physical system to the auxiliary
one, constraints must be imposed upon . It is well
known that there will be no reflection from an interface if
both the phase velocities and wave impedances are identical
across it. Furthermore, the physical reflection at a medium
discontinuity will not be affected by a superimposed artificial
loss mechanism if the boundary conditions (BC), the phase
velocities , and the wave impedancesremain unchanged
before and after the superposition; i.e.,

and (5)

where subscript indicates the auxiliary system whilerepre-
sents the original one. Such a characteristic of zero reflection
is independent of frequency, incident angle, geometry and
medium. If is scalar andnonzeroat interior points ,
the physical and auxiliary systems have identical wave imped-
ances: . Meanwhile, areal
and continuous guarantees identical boundary conditions
and phase terms in the two systems. Therefore, no reflection
is introduced during the transformation. In other words, the
artificial loss seemstransparent. Consequently, the proposed
method is referred to as thetransparent absorbing boundary.

III. RESULTS

To demonstrate the concept of the TAB, the oblique inci-
dence of a TE-polarized plane wave upon a half-space medium
is examined analytically. The corresponding auxiliary fields
are shown in Fig. 1. The incident “electric” field is in the
form of

(6)

Fig. 2. The numerical solutions of theEo of a plane wave traveling
outwardly in both directions.

whose amplitude is no longer a constant. Other auxiliary fields
can be expressed accordingly. The derivation is similar to the
plane wave case in [7]. The continuity boundary condition
derived from (5) leads to Snell’s laws of reflection and
transmission for the auxiliary fields

and (7)

as well as the reflection and transmission coefficientsand

and

(8)

where and are the wave impedances of
the auxiliary fields in medium 1 and 2, respectively. Since the
phase velocities (hence, the propagation direction governed
by Snell’s law) and the wave impedances are identical in the
physical and auxiliary systems, the coefficients given in (8) are
equal to those of the physical case given in [7]. Therefore, the
transparent absorbing boundarydoes not introduce additional
reflections, regardless of the frequency and incident angle of
the waves.

The absorption in the TAB is shown numerically as follows.
Assume that a source is located in the middle of a one-
dimensional unbounded space, and the plane wave propagates
in both directions. Function (4) with and is
used to terminate the computational domain at (i.e.,

m). Equations (2a) and (2b) in one dimension are
approximated with the Lax–Wendroff scheme [8]. The Courant
number is chosen to be one, the cell size is 0.025,
and the time duration is 400 steps, which is sufficiently long
for the waves to bounce back and forth a few times in the
domain. The results are shown in Fig. 2. Dictated by the given

(the dashed line), the magnitude of the auxiliary field
(the dot–dashed line) decays outwardly and becomes zero at
the truncation boundary. The physical field is then found,
using (1a), at all the grid points except the boundary ones
where . The numerical and analytical solutions of
agree well, as indicated in the figure. It should be pointed out
that the singularity of at the boundary poses no problem
in the numerical implementation of (1a) and (1b). It is because
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(a)

(b)

Fig. 3. Isolate and measure reflection errors due to the TAB only. (a) Testing
setup. (b) Reflection error along the lines = 1 m.

the finite difference equations are set up only at the interior
grids where .

In the above example, the reflection error of the TAB are
inseparable from the error due to truncated high-order terms
of the finite-difference scheme. To examine the reflection
characteristics of the TAB numerically, the two-dimensional
function

(9)

is defined only for the absorbing region, shown in Fig. 3(a),
whose thickness is chosen to be equal to the half dimension of
the interior region. Such a configuration allows the reflection
from the TAB layer to enter deep into the interior region,
before the exterior boundary’s reflection (if any) reaches the
interior boundary. Consequently, the computed reflection is
solelydue to the artificial loss mechanism in the TAB. A line
source with TM polarization is placed in the center of the
domain. The local reflection errors are computed in the interior
region, using the methodology suggested by Moore [9]. Yee’s
algorithm [10] is used to approximate (2). The cells are
m m. The Courant number is taken to be
0.7, and the time duration is 100 steps. Double precision was
used. The total reflections from the four walls, with various
incident angles and two frequencies, were collected along the
dashed line in the interior region; and the results are shown
in Fig. 3(b). As predicted, the computed numerical reflections
are very low (i.e., 10 or 160 dB). It should be emphasized

that the testing setup is to isolate the reflection error caused
by the TAB’s loss mechanism. In practice, a decayingis
applied to the interior domain only, as shown in Fig. 2.

Though the TAB is analytically reflection free, its numer-
ical implementation may introduce reflections. When Yee’s
algorithm is used to approximate (2), a numerical perfect
magnetic conductor (NPMC) wall is created near the trunca-
tion boundary [11], [12]. The problem is associated only with
spatially staggered finite-difference schemes, such as Yee’s.
Collocated finite-difference schemes like the Lax–Wendroff
scheme display no NPMC problem, as illustrated in Fig. 2.

IV. CONCLUSION

A new analytical approach, theTransparent Absorbing
Boundary(TAB), has been proposed. The TAB introduces an
artificial loss mechanism that can be mathematically identified.
With the TAB method, a physical problem in an unbounded
space can be solved in a finite closed domain, with the aid
of the auxiliary fields.

Like the popular PML method, the TAB is reflection-free,
independent of frequency, and unconstrained by the incident
angle. The uniqueness of the TAB is that it does not need the
additional absorbing region that is commonly used in the PML.
Besides, the reflection characteristics (i.e., thetransparency)
of the TAB are independent of the curvature and corners of
a computational domain, and it can be applied to truncate a
domain that is “conformal” to the shape of the structure. Also,
the simple analytical formulation of the TAB enables it to be
applied directly in time or frequency domains.
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